Catheter Ablation of VT in Channelopathy

November 3, 2018

Professor Shih-Ann Chen

Division of Cardiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei, Taiwan

VT/VF and Channelopathy

- Arrhythmogenic right ventricle cardiomyopathy
- Brugada syndrome
- Long QT syndrome
- Short QT syndrome
- Catecholaminergic polymorphous VT

ARVC : Clinical Presentation

Groups	Overall (N=80)	Transmural Scar(N=22)	Intermediat e(N=33)	Horizontal Scar(N=25)	P value
Presentation					
Syncope	44(55.0%)	11(50.0%)	14(42.4%)	19(76.0%)	0.021
Palpitation	69(86.3%)	20(90.9%)	28(84.8%)	21(84.0%)	0.754
Dyspnea	32(40.0%)	7(31.8%)	15(45.5%)	10(40.0%)	0.600
VA type					
PVC > 5000/day	32(40.0%)	16(72.7%)	14(42.4%)	2(8.0%)	< 0.001
PVC/Day	9480±6962	17428±14943	9677±14001	2235±5705	< 0.001
NSVT	33(41.3%)	11(50%)	12(36.4%)	8(32.0%)	0.421
Sustained VT	33(41.3%)	4 (18.2%)	16 (48.5%)	13 (52.0%)	0.034
VF	24(30.0%)	2(9.1%)	5 (15.2%)	17(68.0%)	<0.001

Scar Distribution: Transmural Stable VT or PVC Dominant

No inducible VF VT1 VT2 VT3

Lin CY, Chen SA et al. Europace 2018

Horizontal Epi Scar: VF dominant

Endocardial Substrate: M vs. F

Epicardial Substrate: M vs. F

Gender & Abnormal Potentials

Gender : Late Potentials Within LVZ

Gender : Follow-Up of VA Recurrence

After Multivariate analysis:

Male gender and the late potential area independently predicted VA recurrences after successful RFCA.

Electrocardiographic features of BrS

ST Segment abnormalities in leads V1-V3

	Type 1	Type 2	Туре З
J wave amplitude	≥2mm	≥2mm	≥2mm
T wave	-	+/-	+
ST-T configuration	coved	saddleback	saddleback
ST segment (terminal portion)	gradually descending	elevated \geq 1mm	elevated <1mm

Pathophysiology of ECG features

P.G. Meregalli et al. / Cardiovascular Research 67 (2005) 367–378

Right Ventricular Fibrosis and Conduction Delay in a Patient With Clinical Signs of Brugada Syndrome

Coronel et al. Circulation. 2005;112:2769-2777

Lacking of transmural gradient

Coronel et al. Circulation. 2005;112:2769-2777

Conduction delay in BrS

Lambiase et al, Circulation. 2009;120(2):106-17

Progression of Electroanatomic Substrate in BrS patients

Notarstefano P et al. Circulation 2015;131:838-841

Role of Catheter Ablation

• Triggers

Abnormal substrates within RVOT/RV free wall

Elimination of phenotype

Triggers in BrS

Haïssaguerre et al. Circulation. 2003;108:925-928

Substrate modification of fractionated signals within RVOT in BrS

Nademanee et al. Circulation. 2011;123:1270-1279.

Functional properties of fractionated components

Sacher et al. Heart Rhythm. 2014 Apr;11(4):732-4.

Brugada et al. Circulation 2015 Dec;8(6):1373-81

Brugada Syndrome Phenotype Elimination by Epicardial Substrate Ablation

Brugada et al. Circulation 2015 Dec;8(6):1373-81

Ablation strategies in VGH

Effects of epicardial warm water instillation on BrS phenotype and VT/VF inducibility

Changes of functional substrates after epicardial warm water instillation (Example 1)

Changes of epicardial area with abnormal Electrograms

Before instillation

BrS ECG (+) Inducibility (-)

Dynamic changes

BrS ECG (-) Inducibility (-)

> Epicardial warm water instillation

After instillation

BrS ECG (+) Inducibility (+)

Changes of conduction velocity after epicardial warm water instillation

Mapping of ventricular tachycardia in BrS: Correlation between circuit and functional substrates¹

Efficacy of RFCA in BrS

	Haïssaguerre et al.	Nademanee et al.	Brugada et al.	Chen et al.
No. of patients	3	9	14	16
Recurrences	0	1	0	1
F/u months	17	20	5	59.9

Overall 42 patients with BrS receiving catheter ablation 2 recurrences.

Take Home Message - 1

- Horizontal scar rather than transmural scar distribution might be associated with fatal ventricular arrhythmia
- Regarding the substrate, male patients tended to have more late potentials and longer abnormal potentials within the LVZ.
- Male gender and the late potential area independently predicted VA recurrences after successful RFCA.

Take Home Message - 2

- Regional endocardial and epicardial conduction delay and heterogeneity contribute to the depolarization and repolarization abnormalities in BrS.
- Functional substrates and fractionated electrograms within RVOT and RV free wall could be enhanced by drug or warm water instillation
- Both ablation targeting triggers and functional substrates could yield promising clinical prognosis

Male gender and late potentials predict poor outcome

Lin CY, Chung FP, Lin YJ, Chen SA. IJC 2017